MANCHESTER

The University of Manchester

Textual Entailment for Modern Standard Arabic

By: Maytham Alabbas, Formal Methods Group.

Supervisor: Prof. Allan Ramsay

The aim of project

To determine whether one Modern Standard Arabic sentence entails another using a '**Textual Entailment**'-based approach.

Motivations

- Text entailment (TE) can be looked upon as mapping between variable language forms.
- Mapping is possible at lexical, syntactic and semantic levels of the language.
- TE is considered as a framework for other NLP applications like Question Answering, Summarization, ...etc.

Entailment

A text T entails a hypothesis H iff every situation that makes T true, makes H true [1].

- T1: The couple is divorced. entails
- H1: The couple was married.

T2: No student came to class early. does not entail *H2:* No student came to class.

Logical Entailment (see Figure 1)

Difficulties [2]:

- The translation of natural sentences into logic is difficult because of issues, such as *ambiguity* and *extragrammaticality*.
- It needs vast additional knowledge (e.g. about word meaning), also it takes a lot of computation.

Modern Standard Arabic (MSA)

MSA is massively more ambiguous than English.

- The lack of diacritics (see Figure 2).
- Free word order. Jero items(e.g., copulas)

Figure 2: ambiguity caused by the lack of diacritics

Current technique (see Figure 3)

Arabic linguistics analysis:

• Create dependency tree for both T-H.

Forward inference rules :

Expand Husing syntactic templates, e.g.

X travel to $Y \Rightarrow X$ visit Y

X finds a solution to $Y \Rightarrow Y$ is solved by X

Structural rules:

- Find the minimum distance between two trees.
- Find the best sequence of editing operations (delete, insert and rename) for both nodes/subtrees.
- Determine cost function for dependency tree edit operations, including using hyponym rules.

Textual Entailment

 Textual entailment is concerned with developing approximate inference techniques for natural language, using inference rules based on directly matching dependency trees and fragments of dependency trees.

Chierchia, G., and McConnell-Ginet, S. (2001). *Meaning and grammar: An introduction to semantics*: The MIT Press.
Blackburn, P., Bos, J., Kohlhase, M., and de Nivelle, H. (2001) Inference and computational semantics. *Studies in Linguistics and Philosophy, Computing Meaning* 77: 11-28.